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A
computer-aided tool for the simulation, optimization and analysis of the combined

operation of the hydrodesulphurization (HDS) and fluid catalytic cracking (FCC)
processes in an oil refinery is presented. The optimization of these processes is an

important yet difficult engineering task, because of the complexity in the integration of the two
units, the large number of interacting variables, the product quality specifications and the
financial benefits associated. The proposed tool is developed in a user-friendly Visual Basic
environment and operates in two different modes: the modelling-prediction mode and the
optimization-sensitivity analysis mode. The modelling of the processes is based on ‘short form’
models, which were created following statistical and neural network approaches. This kind
of model usually has short computing time requirements, which is critical for the optimization
mode. The optimization algorithm is based on a financial objective function with a flexible
form, which gives the user the option to explore a variety of scenarios. Industrial runs have
verified the modelling accuracy of the tool. The optimization scenarios examined include the
contemporary needs of modern refineries for LPG and gasoline maximization, subject to strict
quality specifications. The demonstration of this tool aims to give an insight into the system
dependencies and add knowledge on the possibility of a more profitable operation of such a
complex process.

Keywords: computer-aided tools; process modelling; simulation; optimization; fluid catalytic
cracking; hydrodesulphurization.

INTRODUCTION

Computer-aided tools are nowadays a significant part of the
engineering practice. They are advanced computer programs
mainly used as decision support systems (DSS), assisting
decision-makers in obtaining optimal solutions in compli-
cated problems, where it is not possible or desirable to have
a completely automated system to perform the entire deci-
sion process. The overall architecture of these tools depends
on the type of the problem and, more importantly, on the
phase where the tool assists the decision of the experts.
While the type of the problems that computer-aided tools
deal with is varying, one can generally distinguish two main
phases of their implementation in problem solving: the
design-decisions phase, in which the computer-aided tool
helps the expert to build different scenarios during the
design stage of the process (Kheawhom and Hirao, 2002;
Draman et al., 2002) and the operational-decisions phase,

during which the expert creates and examines various
optimization scenarios for the operational variables of a
given process design (Sundararajan et al., 1998).

One decisive criterion for the implementation of these
tools is their user-friendliness. Typical production engineers
or managers, who are generally the users of such tools, do
not have sufficient mathematical and programming expertise
to formulate, for instance, complex objective functions and
constraints, which is a necessary part of every optimization
procedure. Therefore, the environment in which the user
communicates with the system should be as comprehensible
as possible and interact with the user only in the ‘real system
level’, hiding at the same time the complicated mathematical
aspects (Draman et al., 2002).

In this work a computer-aided tool for the simulation,
optimization and analysis of the combined HDS–FCC
process is presented. The tool does not interfere with the
design of the process, since it is based on the operational
data of a specific commercial unit (Aspropyrgos Refinery
of Hellenic Petroleum S.A, Athens). The simulation and
optimization of the integrated operation of the HDS and the
FCC processes pose great challenge for every petroleum
refinery. The FCC unit is considered to be the workhorse of
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a modern refinery, producing around 40% of the total
refinery gasoline and many other valuable products such
as liquefied petroleum gas (LPG) and diesel (LCCO). Its
complexity arises from the strong interactions between the
operational variables of the reactor and the regenerator.
Moreover, there is a large degree of uncertainty in the
kinetics of the cracking reactions and catalyst deactivation
by coke deposition in the riser reactor and the coke burning
process in the regenerator (Christensen et al., 1999). While
the FCC unit is responsible for the 40% of the total gasoline
pool, its contribution to the total gasoline sulphur reaches
almost 90%. Owing to the strict environmental regulations
regarding fuel emissions, the hydro-treatment of the FCC
feed is now required and this is mainly achieved in the HDS
unit. Another effect of the hydro-treatment is the decrease of
the nitrogen content in the FCC feed, which contributes
significantly to lower NOx emissions from the FCC regen-
erator. Furthermore, the hydro-treatment decreases the
density of the FCC feed, which corresponds to an increase
of its crackability and thus to an improvement of its quality.
The main difficulties in the modelling of an HDS unit are
that catalyst deactivation occurs with complex reaction
kinetics, small changes in the unit operating conditions
may result in large changes in product properties and the
operational variables range is too short to create a reliable
model based on industrial datasets.

The complex and non-linear interactions between the two
processes constitute their simultaneous treatment quite servi-
ceable, especially when the optimization of their combined
operation is concerned. Furthermore, the simultaneous treat-
ment raises the simplicity and the user-friendliness of the
simulator interface, in which the user examines the two
processes globally, in a manner reflecting the commercial
reality. For that reason petroleum companies have two options
to deal with their cracking processes. One is to buy a
commercial simulator like ASPEN, PRO II, PACE, KBC
Model etc., and the other is to develop a black box model to
simulate their specific refinery processes. Each method has its
advantages and disadvantages. The commercial simulators
are mainly based on fundamental mass and energy balances
and sometimes on empirical equations, which are adapted and
validated for the special case of the FCC and HDS units.
However, due to the complexity of these processes, the usual
trade-off phenomenon between generalization and specializa-
tion appears. This means that these tools may be by default
appropriate for a variety of FCC units (generalization),
providing at the same time a number of options, so that the
user can bring the simulator closer to a specific process setup.
On the other hand, if one is interested in satisfying all the
idiosyncrasies of a specific commercial unit (specialization),
he can adopt the black box modelling approach. This
approach follows the reverse logical path compared with
the aforementioned simulators: a model is built based on
the needs of the specific process setup and the conclusions
drawn from the analysis of this model are less accurate for
non-similar setups. Such approaches become more and more
popular, as the development of powerful black box models
like neural networks becomes significantly easier. Moreover,
approaches like the one presented here are much less expen-
sive for the industry, compared with the very expensive
commercial simulators mentioned.

Consequently, the simulation of the combined operation
of the HDS and the FCC units is now the key for a profitable

operation of a modern refinery, as far as the production of
‘clean fuels’ is concerned. Their serial operation, their
complexity and their economic importance make a specia-
lized computer-aided tool necessary for this challenging
research subject.

PROCESS DESCRIPTION

In the present study the commercial data of Aspropyrgos
Refinery of Hellenic Petroleum S.A., the largest and most
complex oil refinery in Greece, were used to develop predic-
tive models for the integration of the two units and examine
the economic benefits of their optimization. The industrial
system examined consisted of a two-stage FCC feed hydro-
treater and a typical riser-type fluid catalytic cracking unit.
The connection of the two units is serial in the sense that the
liquid product of the HDS is a significant part of the FCC
feed. The HDS feed is usually vacuum gas-oil (VGO) or
straight run gas-oil of high sulphur content, while the FCC
feed is the desulphurized HDS product supplemented with
high sulphur VGO, in a ratio proportional to the refinery needs.

As shown in Figure 1, in the commercial HDS unit under
consideration, the total hydrogen feed, which consists of the
recycled hydrogen and the hydrogen make-up, is split into
three parts: the main feed of the first reactor, the first quench
at the middle of the first reactor and the second quench at
the entry of the second reactor. The purpose of the two
quenches is to reduce the reactor temperature as well as the
partial pressure of the H2S produced. In the HDS process
the high-sulphur vacuum gas-oil contacts the hydrogen
in the presence of catalyst and hydrogenation reactions
occur. The main reactions are the desulphurization, the deni-
trogenation and the saturation of aromatics and double
hydrocarbon bonds. The process is carried out in a trickle
bed reactor in two stages. In the first-stage the cobalt–
molybdenum (CoMo) catalyst provides the sulphur removal
and in the second stage the nickel–molybdenum (NiMo)
catalyst promotes mainly the saturation reactions. The
hydrogen recycling rate, the unit pressure and temperature,
as well as the feed and catalyst quality, are the most
important parameters that affect the process.

The commercial FCC unit operates in a fully circulating
mode and consists of the riser, the stripper and the

Figure 1. Schematic diagram of the commercial HDS–FCC system studied.
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regenerator. At the reactor bottom the gas-oil contacts the
hot catalyst that flows from the regenerator and evaporates.
The heat consumed by the endothermic cracking reactions is
regained from the burning reactions in the regenerator. In
the FCC process the high molecular weighted feed is
cracked to lighter hydrocarbons (diesel, gasoline, LPG and
sour gas). The reactor temperature, the catalyst-to-oil ratio,
the catalyst type and the feed quality are the most important
parameters that affect the process.

PROCESS MODELS

The simulator of the HDS–FCC combined operation
consists of two sub-models. They have been developed
focusing on each process separately and then connected in
a way representing the reality of the commercial unit. In this
way, problems of complexity and inflexibility of the overall
multivariable system have been solved. These sub-models are
also used during the optimization phase, which involves the
consideration of many operational variables and may have to
fulfill a variety of constraints. Consequently, fast and flexible
models are needed, so that the optimization procedure
requires short computational time to converge. Short-form
models fulfill this need. The term ‘short-form models’ is used
to describe models which relate input and output variables
through a concrete functional relationship of algebraic form.
Such models may be developed with regression analysis or
more sophisticated techniques like neural networks, which
belong to the class of ‘black box’ modelling tools (Qi et al.,
1999). However, the main disadvantage of the black box
modelling approach is that its empirical nature and its lack of
fundamentality constitute the final models applicable with
safety only for the specific process setup and within the
range of the original training dataset, based on which they
were developed. Thus, one has to weigh the pros and cons
of the black box modelling approach, being aware of the
limitations regarding extrapolation abilities on the one hand
and the high accuracy and simplicity in the development and
use of such models on the other.

Furthermore, if black box models are designated to be used
for optimization purposes, a more precise analysis of the
interdependencies between the process variables is required.
If such dependencies are present in the set of the input
variables of the model, they may not affect its predictions
regarding realizable experimental situations, but they play an
important role in the determination of the process-manipu-
lated variables during optimization scenarios. The latter must
be constructed according to the process freedom degrees and
of course the experimental experience. However, the detailed
analytical solution is typically unavailable in processes, where
black box models are necessary. In such cases the main mass
and energy balances of the entire system can be written
including all the system variables in a generalized theoretical
pattern. Based on this pattern the corresponding system can
be analysed and the degrees of freedom and the manipulated
variables can be determined. Such an attempt of analysing the
closed system of the FCC unit follows.

The effects of the stripper, the cyclones and the lift lines on
the total unit performance are neglected, since their operation
is rather constant in the commercial unit and has a much
lower impact on the final product compared to this of the riser
and the regenerator. Considering that the feed rate (FVGO), the
catalyst circulation rate (CCR), the riser pressure (PR), the

riser temperature (TRX), the coke on regenerated catalyst
(CREG) and the feed and catalyst properties [P(feed), P(cata-
lyst)], all influence in a lower or higher extent the catalytic
reactions, the mass balances [equations (2)–(6)] for each
of the five products (gasoline, coke, LPG, LCCO, sour gas)
can be written. Furthermore, the unconverted feed, namely
the slurry, can be calculated from the total mass balance of
the riser reactor as shown in equation (1). In equation (7) a
generalized heat balance of the total riser height is presented.
The functions g and c in equation (7) express the enthalpy
change of the FCC feed and catalyst, which enter the riser at
rates FVGO and CCR and temperatures TPR and TREG,
respectively, and exit from the riser top at temperature TRX.
The enthalpy of feed vaporization DHvap [equation (8)] is
mainly a function of the feed properties, the feed and catalyst
circulation rates and the catalyst–feed mix temperature.
Finally, the heat consumption by the endothermic cracking
reactions DHcrack is a function of the feed rate, the product
yields, the reaction temperature and the feed properties as
expressed in equation (9).

FVGO � FVGO

X
yi ¼ 0 (1)

yi ¼ fi[FVGO, CCR, PR, TRX, CREG,

P(feed), P(catalyst, FCAT)] (2)�(6)

FVGO � g[TPR, TRX, P(feed)]

þ CCR � c[TREG, TRX, P(catalyst)] þ DHvap

þ DHcrack ¼ 0 (7)

DHvap ¼ FVGO � h[FVGO, CCR, TPR, TREG,

TRX, P(feed)] (8)

DHcrack ¼ FVGO � h[yi, TRX, P(feed)] (9)

where i¼ gasoline, coke, LCCO, sour gas, LPG.
It should be noted that the catalyst addition rate FCAT,

although an operational variable, was categorized as a
catalyst property since it does not affect any other variable
of the process except the catalyst quality. However, the high
cost of the catalyst supply makes the catalyst addition rate
an important parameter for the financial objective function.

Under the same pattern the mass and energy balances are
written for the regenerator in equations (10)–(13). The flue
gases, namely the carbon dioxide and monoxide, the oxides
of sulphur and nitrogen and the combustion air surplus, are
lumped for simplicity into the variable FGAS as shown in
equation (11). Equation (10) presents the total mass balance
for the coke and gas in the regenerator, while equation (12)
expresses the heat balance where DHcomb is the energy gain
due to the combustion of coke [equation (13)].

yCokeFVGO þ FAIR � FGAS � CREG ¼ 0 (10)

FGAS ¼ f (yCoke, FVGO, FAIR, CCR, TREG, P(air)) (11)

c[CCR, TRX, TREG, P(catalyst)]

þ u[FAIR, TAIR, TREG, P(air)] þ DHcomb ¼ 0 (12)

DHcomb ¼ q[yCoke, FVGO, FAIR, CCR,

TREG, P(air)] (13)

In commercial applications the combustion air enters the
regenerator at ambient conditions, thus the air properties
[P(air)] and the air preheat temperature TAIR can be consid-
ered constant. After all the above assumptions, the number
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of equations that theoretically can describe the closed FCC
unit is 13, while the operational variables (unknowns) used
are 20. The seven free variables that are typically used for
unit manipulation in the real process level are the feed rate,
the feed preheat temperature, the riser exit temperature, the
riser pressure, the regenerator air feed and of course the feed
and catalyst quality, which in our case were expressed with
P(feed) and P(catalyst) respectively.

HDS Model

The HDS model consists of four short-form equations for
the prediction of the HDS product properties, namely the
estimation of % wt sulphur content, % wt nitrogen content,
the refractive index and the specific gravity of the hydro-
treated feed. The general form of the equations is presented
in equation (14). Each equation contains 13 constant factors
and seven variables and is described in detail in Bellos et al.
(2001):

p ¼

K1eK2THDSP
K3

HDSF
K6

VGO,HDS(1 þ K10Q
K11

H,q1
)

� (1 þ K12Q
K13

H,q2
)

(1 þ K8Q
K4

H,M)(1 þ K9Q
K5

H,R)
þ K7

(14)

In equation (14) THDS is the HDS temperature, PHDS the unit
pressure, FVGO,HDS the feed rate, QH,M the hydrogen make-
up, QH,R the recycled hydrogen rate, QH,q1 and QH,q2 are the
first and second quench rates and p is the corresponding
property estimated. Moreover, the mean average boiling
point of the hydrotreated feed was estimated from the
specific gravity and the refractive index [as they are calcu-
lated from equation (14)], based on an empirical correlation
presented in the literature (Riazi and Daubert, 1986).

For the development of the short-form models of equation
(14) the meta-modelling approach was adopted. At first
experiments were performed in a pilot plant, operating in
the National University of Athens at conditions similar to
those of the commercial unit. Based on the pilot data a
kinetic model was developed, which includes the mass and
energy balances considering the two stages of the HDS
process as an ideal plug flow reactor. Then, short-form
models [equation (14)] were developed to simulate the
performance of the kinetic model and thus the operation
of the commercial unit. The main reason for choosing short-
form models was the computational load. Namely, the
response time of the short-form models was 1=2000
compared with that of the detailed kinetic model. This
would correspond to a major increase in the time consump-
tion of the optimization process, in which the HDS models
were called several times, if the kinetic model was used. For
the development of the short-form models, 8640 repeated
runs of the kinetic model were performed to estimate the
values of the total 52 parameters of equation (14). The
achieved absolute values of the relative error had a mean of
2.21% for the sulphur content, 1.70% for the nitrogen
content, 0.086% for the specific gravity and 0.027% for
the refractive index of the hydrotreated feed. The short-form
models were developed with the properties of only one feed
and one catalyst, namely those used in the commercial unit,
with properties S¼ 2.12% wt, BN¼ 0.06% wt, SG¼ 0.922,
RI¼ 1.4937. Whenever the feed or catalyst quality change,

the short-form models need to be recalibrated in order to
estimate new K values for equation (14). The ranges in
which the HDS short-form models were developed are
presented in Table 1.

FCC Model

The overall FCC model consists of short-form models,
which predict the output variables of the FCC process
presented in Table 2. These variables refer to the distribution
of the main products of the process, their analysis in some
chemical compounds of interest and their quality charac-
teristics (gasoline octane number and suphfur content). As
shown in Table 2, most of the output variables were predicted
by a neural network (NN), and the rest by parametric models
based on regression analysis (PR). The latter modelling
approach was used for those output variables for which the
quantity of available data was inadequate to train a neural
network. The parametric models presented in the following
paragraphs were created using the statistical package SPSS
(SPSS Inc.), while the artificial neural networks were created
using the Neurosolutions (NeuroDimension Inc.) software
package.

Table 3 shows the input variables that were used for the
training of the neural network. These variables were selected
in cooperation with the process engineers of the commercial
unit according to the generalized degrees of freedom analy-
sis described above. The available database of the commer-
cial unit covered a period of two years. The data screening
for outliers detection has been based on typical statistical
techniques and valuable information from the process engi-
neers indicating startup and shutdown periods. This proce-
dure has resulted in 350 data series and determined the
ranges of the input variables presented in Table 3.

The neural network was a multi-layer perception (MLP)
consisting of three layers: an input layer with as many nodes
as the input variables (15), a hidden layer with number of
nodes varying from 1 to 5 and an output layer with as many
nodes as the output variables (16). The most common
training algorithm was used, that is the error back propaga-
tion (EBP). In order to avoid over-fitting and over-training
phenomena, a version of the ‘cross validation–winner model
algorithm’ described in the literature (Michalopoulos et al.,
2001) was used for the selection of the appropriate number
of nodes in the hidden layer of the neural models. The 350
data series were randomly split into training and validation

Table 1. Ranges and optimization usage of the HDS sub-model variables
(Par¼ optimization parameter; Var¼ optimization variable).

Input variables Notation Training range Usage

HDS temperature (�C) THDS 335–355 Par
HDS pressure (bar) PHDS 74–86 Par
HDS hydrogen make-up

(kN m3 h�1)
QH,M 15–30 Var

Recycle hydrogen rate
(kN m3 h�1)

QH,R 79–94 Par

HDS VGO feed
rate (t h�1)

FHDS 175–225 Var

First quench rate
(kN m3 h�1)

QH,q1 4–12 Par

Second quench
rate (kN m3 h�1)

QH,q2 7–11 Par
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sets consisting of 225 and 125 data series, respectively.
The first set was used for the neural network training
procedure, and the second for monitoring the generalization
abilities of the neural network according to the algorithm
mentioned above. One of the end criteria for this algorithm
was the number of nodes in the hidden layer, which as
mentioned was set at a maximum value of 5, in order to
keep the ‘data to network weights’ ratio as high as possible.
The other important training parameter of the algorithm,
namely the number of training epochs, had an upper limit
equal to 10,000, which is a logical choice considering the
convergence speed of the EBP algorithm. According to this
procedure, the ‘winner’ neural model consisted of three
nodes in the hidden layer.

The performance of the FCC model in terms of nor-
malized mean square error (NMSE) for each output variable
is presented in Figure 2, where it can be seen that the

over-fitting phenomenon has been avoided. Table 2 presents
the model performance according to the mean of the
absolute values of the relative error (MARE). The model
performance deteriorates only for the prediction of sulphur
in gasoline fractions, while for the rest of the variable
MARE lies between 1 and 8%, which is considered satis-
factory. The error in the prediction of the gasoline suphur
can be attributed to the combination of higher experimental
error and low values. Figure 3 presents the performance of
the neural model for two of the most important output
variables, the yields of gasoline and LPG, and demonstrates
a typical example of the prediction accuracy of the model.
The performance is evaluated over all 350 available data
series, the last part of which depicts the validation set. It is
obvious that the neural model is able to follow the trend
satisfactorily, which is of great importance for the needs of
the optimization case studies.

Table 3. Ranges and optimization usage of the input variables of the FCC neural sub-models. Column
Orientation denotes the unit to which the variable refer (HDS¼ output variable of the HDS unit, Tank¼ input
variable of the VGO from Tank, FCC¼ input variable of the FCC unit. Column Usage denotes the use of each
variable in the optimization procedure (Par¼Optimization Parameter, Var¼Optimization Variable).

Input variables Notation Training range Orientation Usage

Feed specific gravity SG 0.896–0.921 HDS-Tank Par
Refractive index (at 20 �C) RI 1.482–1.495 HDS-Tank Par
Sulphur in feed (% wt) S 0.30–1.85 HDS-Tank Par
Basic nitrogen in feed (wppm) BN 158–421 HDS-Tank Par
Mean average boiling point (�C) MeABP 438–472 HDS-Tank Par
FCC VGO feed rate (t h�1) FVGO 236–284 HDS-Tank Var
FCC feed preheat (�C) TPR 360–396 FCC Var
FCC riser top temperature (�C) TRX 519–526 FCC Var
FCC riser pressure (kg cm�2) PR 2.1–2.4 FCC Par
FCC regenerator air feed (kN m3 h�1) QAIR 99–115 FCC Par
FCC catalyst addition rate (Mt day�1) FCAT 0.0–4.9 FCC Par
Catalyst micro activity MAT 66.0–75.3 FCC Par
Catalyst average particle size (mm) APS 74–84 FCC Par
Catalyst total surface area (m2 g�1) SA 129–171 FCC Par
Catalyst average bulk density (g m�3) ABD 0.86–0.94 FCC Par

Table 2. Output variables, model type and mean absolute relative error (MARE) of the FCC sub-models
(NN¼ neural network; PR¼ parametric regression).

Output variables Notation Training range Model type MARE

Sour gas (% wt) ySourGas 4.3–6.1 NN 3.4
LPG (% wt) yLPG 13.5–16.5 NN 1.7
Gasoline (% wt) yGasoline 45.0–53.0 NN 1.4
LCCO (% wt) yLCCO 13.9–22.0 NN 4.5
Slurry (% wt) ySlurry 5.8–11.2 NN 5.3
Coke (% wt) yCoke 3.5–4.1 NN 0.9
Aromatics in gasoline (% wt) WAromatics 22.1–28.3 PR 7.1
Olefins in gasoline (% wt) WOlefines 22.3–33.0 PPR 6.1
Paraffins in gasoline (% wt) WParaffins 20.1–30.8 PR 6.1
Naphthens in gasoline (% wt) WNaphthens 10.6–14.4 PR 5.9
Propane in LPG (% wt) WPropane 7.3–13.6 NN 6.9
Propylene in LPG (% wt) WPropylene 22.8–46.0 NN 7.5
Butane in LPG (% wt) WButane 3.3–6.3 NN 7.2
i-Butane in LPG (% wt) Wi-Butane 13.5–21.3 NN 4.5
Butenes in LPG (% wt) WButenes 23.0–45.8 NN 7.2
LCN in gasoline (% wt) WLCN 80.0–88.5 NN 1.1
RON of LCN RONLCN 92.1–94.1 NN 0.2
RON of HCN RONHCN 85.7–93.0 NN 0.6
Sulphur in LCN (% wt) SLCN 0.004–0.085 NN 18.1
Sulphur in HCN (% wt) SHCN 0.050–0.637 NN 26.1
Sulphur in LCCO (% wt) SLCCO 0.47–2.83 NN 7.7
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The general form of the parametric models is presented
in equation (15):

i-component (%wt) ¼ f (feed properties)

� g(operating conditions) � CI (15)

where the i-component is one of the four gasoline compo-
nents presented in Table 2. The mathematical function for
the feed properties effect was selected to be linear and
includes the physical properties which mostly affect the
gasoline composition and can be measured on a daily basis
in the refinery laboratory (specific gravity, % wt sulphur
content, % wt basic nitrogen content, mean average boiling
point and refractive index as presented in Table 3). The
operating conditions function was also selected to be linear
and incorporated the riser temperature, the catalyst-to-oil
ratio and the weight hourly space velocity, which are known
to adequately describe the FCC process in steady-state
conditions (Wollaston et al., 1975; Arbel et al., 1995;
Bollas et al., 2003). Linear models were found to adequately
predict the gasoline composition (Lappas et al., 1999) and
they were chosen for the simplicity in their development and
use. The use of the catalyst-to-oil ratio and the weight hourly
space velocity in equation (15) requires the prediction of the
CCR based on the variables presented in Table 3. This is
achieved with a neural network following the same proce-
dure as described in the previous paragraph. The accuracy
levels of this neural model were very high, reaching
MARE¼ 0.9%, confirming that CCR is actually a depen-
dent variable. Finally the catalyst effect was incorporated
through a catalyst index, CI, which is a multiplier to the
product of operating and feed effect functions. The reason
for using a simple multiplier to characterize the catalyst
effect on the cracking reaction is that the development of
a predictive catalyst function appears quite complex. Gener-
ally, the concept of describing catalyst activity and selecti-
vity with a catalyst index is a common industrial strategy, in
order to validate catalyst performance in commercial units.

Combined Model Interconnections

The integration of the models included in the tool was
made in a sequential form as shown in Figure 4. This means

Figure 2. Performance of the neural network in terms of NMSE for all the
output variables.

Figure 3. Performance of the neural network (gasoline and LPG yields).

Figure 4. HDS–FCC sub-models integration.
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that the predictions of the short-form models applied for the
simulation of the HDS unit are entered as input variables to
the blending routine, where the properties of the VGO from
tank and the HDS liquid product are mixed. For the
estimation of the properties of the blended FCC feed the
weighted average of the respective properties of the HDS
product and the VGO from tank was used. This average
can be very accurate, as the blended hydrocarbon mixtures
are of similar molecular weights and structures (American
Petroleum Institute, 1992). Furthermore, a typical 25% of
the HDS product is considered primary distillates and
subtracted from the liquid product that is blended with the
VGO from tank. This value can be altered according to the
specific HDS operation.

OPTIMIZATION APPROACH

Objective Function

The financial objective function is based on the mass
balances of the two units, while the energy consumption
costs are considered negligible. The cost of preheating the
FCC feed is neglected, since it is considered that hot streams
of other processes could be used for that reason. This
assumption is correct for the commercial unit examined.
Furthermore, the cost of preheating the feed is rather small
compared with all other costs of the total process (hydrogen
consumption, feed and catalyst supply, etc.). Thus, the
financial objective takes the form of equation (16):

Z ¼ (price of products) � (cost of raw material)

¼ Zi � Zo (16)

The term ‘cost of raw material’ of equation (16) is calculated
by the following equation:

Zo ¼ FVGO,HDS � IVGO,HDS þ FVGO,TANK � IVGO,TANK

þ FH � IH þ FCAT � ICAT (17)

where FVGO,HDS, FVGO,TANK, FH and FCAT are the feed rates
(t h�1) of the VGO into the HDS and from the tank into
the FCC, of the hydrogen used in the HDS and of FCC
catalyst make-up respectively, while IVGO,HDS, IVGO,TANK, IH
and ICAT are the respective costs per mass of the ‘raw
material’ ($ t�1).

The term ‘price of products’ in equation (16) refers to the
value of the FCC products (sour gas, LPG, gasoline, LCCO
and slurry). In the following equations, where the various
components of this term are expressed, FVGO denotes the
total feed rate into the FCC (t h�1), yi the yield of the FCC
concerning the i-product and Ii its respective monetary value
per mass. More specifically the price of sour gas is calcu-
lated by the following equation:

Zi,SourGas ¼ FVGO � ySourGas � ISourGas (18)

while the price of LPG depends on the distribution of the
chemical compounds, of which it consists, namely propane,

propylene, butane, iso-butane and butenes. It is given by the
following functional from:

Zi,LPG ¼ FVGO � yLPG � (WPropane � IPropane

þWPropylene � LPropylene þWButane � IButane

þWi�Butane � Ii�Butane þWButenes þ IButenes)

(19)

where Wj is the weight fraction of the j-component of LPG.
The gasoline price depends on its distribution of light cut
naphtha (LCN) and heavy cut naphtha (HCN), as well as its
octane number (RON) and sulphur content (S). This is
expressed in the following equation:

Zi,Gasoline ¼ FVGO � yGasoline

�
WLCN � ILCN � [1 þ dLCN,RON

� (RONLCN � RON�
LCN) þ dLCN,S

� (SLCN � S�LCN)] þWHCN � IHCN

� [1 þ dHCN,RON � (RONHCN � RON�
HCN)

þ dHCN,S � (SHCN � S�HCN)]
�

(20)

where the influence of RON and S is expressed by their
differences from the reference values RON �

i , S�i of the LCN
and HCN fractions, multiplied by a respective factor, d,
which refers to the importance of this difference. The
reference values RON�

i , S�i are the values of RON and S
corresponding to the standard prices (Ii) of the two fractions.

The price of LCCO depends on its quality expressed by
the sulphur content in a similar way to gasoline:

Zi,LCCO ¼ FVGO � yLCCO � ILCCO � [1

þ dLCCO,S � (SLCCO � S�LCCO)] (21)

while the case of slurry is handled like sour gas:

Zi,Slurry ¼ FVGO � ySlurry � ISlurry (22)

Optimization Variables and Constraints

Above, the manipulated variables of the FCC unit were
determined based on a generalized degrees of freedom
analysis. The free input variables of the FCC unit shown
in Table 3 were categorized as optimization variables or
parameters according to their possibility of receiving any
random value and the extent of their effect on the FCC
yields and quality. Thus, the properties of the VGO from the
tank and the FCC catalyst were categorized as optimization
parameters, as the feeds and catalysts available to the
refinery determine them. Furthermore, the FCC unit pres-
sure (PR) and the regenerator combustion air (QAIR) were
categorized as parameters, since they do not affect signifi-
cantly and directly the process outcome. Finally, the most
important variables for the HDS unit operation, namely the
HDS feed rate (FHDS) and the hydrogen make-up (QH,M),
were chosen as the optimization variables for that unit.

The discrimination of the optimization variables (marked
Var) and the optimization parameters (marked Par) is
presented in Tables 1 and 3. The ranges in these tables, as
well as in Table 2, serve as the default constraints for the
optimization procedure. Starting from this point the user has
the choice of defining smaller ranges or even specific values
for any of the two classes of constraints (input and output),
which increases the flexibility of the tool and makes the
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examination of a vast number of case studies possible. As
mentioned, the FCC unit produces around 40% of the total
refinery gasoline. Consequently, the operating limits of the
FCC unit usually determine those of the combined HDS-
FCC units and generally the operation of the total refinery.
However, if the operation of the complete refinery restricts
the operating limits of the HDS-FCC process, then the user
can alter the constraints of the variables accordingly.

Optimization Algorithm

The optimization procedure uses the optimization algo-
rithms provided in the edition Small-Scale NLP=NILP DLL
V3.5 of the software package SOLVER (Frontline Systems
Co.), which was incorporated in the tool. Its ability to
handle non-linear optimization problems including up to
400 variables and 200 constraints makes it a powerful tool
for complex multivariate optimization.

Three algorithms were included in the software package: a
quasi-Newton, a conjugate gradient and a genetic algorithm.
The two first methods belong to the same class, namely the
class of methods based on derivative (first or second order)
calculation of the objective function. The quasi-Newton
method approximates the Hessian matrix, based on a function
of the gradient of the objective function (Press et al., 1986;
Dennis and Schnabel, 1983). The conjugate gradient algo-
rithm is analogous to Newton’s method in the sense that it
also uses the derivatives of the objective function but in a
manner that avoids extensive computation. More specifi-
cally, it is well known that, although the objective function
decreases more rapidly along the steepest descent direction
(negative of the gradient of the objective function), this does
not necessarily produce the fastest convergence. In the
conjugate gradient algorithms a search is performed along
conjugate directions, which produces generally faster conver-
gence (Fletcher and Reeves, 1964).

The combination of these fast optimization algorithms
with the short-form modelling approach makes the tool
respond almost instantly. However, when the optimization
scenario is a multisolution problem, these two algorithms
may get stuck in local maxima. Therefore, the option of a
genetic algorithm based on a completely different philoso-
phy has been included in the tool. Genetic algorithms are
founded on the basic tenets of natural selection and evolu-
tion (Goldberg, 1989), which in terms of optimization
means that the variable values are changed randomly or
heuristically in order to minimize the objective function and
not according to its derivatives. Falling into the category of
stochastic optimization techniques, they share their advan-
tage of small possibility of getting stuck into a local
minimum. However, if some of their parameters are not
properly handled, processing speed and data storage costs
may become large, which negatively affects its convergence
speed (Fogel, 1994).

Once more it must be pointed out that the short-form
modelling approach contributes to the direction of conver-
gence speed by not overloading the computational task and
therefore helping these algorithms to achieve their task in
acceptable time. After all, it is among the user’s options in
the integrated tool to select the algorithm that best suits the
optimization procedure. However, the parameters of the
algorithms are not adjustable. Their values have been
selected and kept constant during the development of the

tool, taking into account the precision limits of the predic-
tion models. The interaction of the user with such details of
the algorithms would make the tool cumbersome for the
non-expert user.

OPERATIONAL ASPECTS

The overall structure of the developed DSS tool is
presented in Figure 5. It consists of three main components,
which strongly interact with each other and most impor-
tantly with the user:

(1) The process models, which simulate the operation of the

HDS and the FCC units, as well as the interconnection

between them in steady-state conditions.

(2) The database, where each steady-state run can be stored

to be available for later usage.
(3) The optimization algorithm, which is based on a finan-

cial objective function that takes into account the
marginal profit of the combined operation, based on a
financial database provided.

The system was implemented within the computational
environment of Microsoft Visual Basic and can be used in
any standard personal computer running Microsoft Windows
operating system. The interface of the tool includes two
basic modes: (1) the simulation mode, where the input
variables of the system are entered and the predictions of
the integrated model are calculated; and (2) the optimization
mode, where the integrated model runs backwards to
estimate the optimum values for some of the input variables
for a ‘desired solution’, or forward to perform sensitivity
analysis and reveal in a diagrammatic form the input
parameters effect on the most important output variables.

The environment of the simulation mode is presented in
Figure 6. The integrated model predictions include the FCC
product yields, namely the yields of gasoline, coke, LPG,
LCCO, sour gas and slurry as well as the HDS liquid
product properties. Furthermore, the prediction of the
products quality includes the composition of gasoline,
LPG, the % wt sulphur in LCN, HCN and LCCO, the
percentage of LCN in gasoline and the RON of LCN and
HCN. The ‘catalyst index’ mentioned above is calculated
with a regression routine included, where the data of at least
one experimental run are required to calculate the index for
the catalyst characterization.

Figure 5. The structure of the HDS–FCC tool.
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The second mode of the tool performs the optimization of
the integrated HDS–FCC system in the environment
presented in Figure 7. The model input variables are split
into optimization variables, which are expected to deliver
the optimum solution for the integrated system, and opti-
mization parameters, which are kept constant, equal to a
value selected a priori. The optimization solution can be
requested for a subset of the optimization variables, while all
other variables are categorized as optimization parameters
and retain a constant value. Moreover, constraints can be
entered for the input and output variables range, in order to

achieve a more realistic solution for the corresponding
system. The market prices of the process products and raw
materials are requested for the financial optimization of the
system.

Finally, the trends of some product yields and their
properties vs the most important system input variables
are presented (Figure 8). That was made with sensitivity
analysis runs of the integrated system and provides an
estimation of what should be expected when the values of
the selected input variables are changed. The process vari-
ables that were chosen a priori for this demonstration of

Figure 6. The interface of the HDS–FCC simulator: prediction mode.

Figure 7. The interface of the HDS–FCC simulator: optimization mode.
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segregate influences were the HDS feed rate, the HDS
hydrogen make-up, the HDS temperature, the VGO from
tank rate and its sulphur content, the FCC feed preheat
temperature, the FCC riser exit temperature and the catalyst
MAT activity. This analysis provides a sense of how these
variables of the integrated HDS-FCC system affect its
operation and the final product yields and quality.

CASE STUDIES

Prediction Mode

The predictive accuracy of the tool was evaluated with
three commercial tests, which were not included in the training

procedure of the models. Table 4 presents the values of the
input variables of the models in these three runs. The first
commercial test was a routine run of the industrial unit, in
which all input variables laid within their training range and
most of them near their mean values. In the second com-
mercial test some of the variables had marginal values
regarding their training range [namely the % wt sulphur
content (S) and the average catalyst particle size (APS)],
while another one (the % wt basic nitrogen content, BN) was
out of its respective training range. In the third commercial
test even more input variables had marginal values. Table 5
presents the values of the output variables, as these were
measured in the commercial tests and predicted by the tool
implementation. The comparison shows that in all cases
the tool performed within the accuracy determined during
the model’s development and analysis. Focusing on the
gasoline quality, which is of great importance for the refinery,
the prediction of RON and sulphur content lies within the
accuracy demanded, which encourages the user to trust the
results of the optimization scenarios based on gasoline quality
requirements.

Optimization Mode

The scenarios presented here demonstrate the capabilities
of the optimization mode of the presented computer-aided
tool. They are mainly focused on realistic situations which
depict the contemporary needs regarding the products of the
FCC unit. The maximization of the refinery marginal profit,
using constraints on the gasoline yield and quality, consti-
tutes such scenarios. The values of the product prices and
raw material costs, which are necessary for the financial
objective function, are presented in Table 6. These are the
default values that Aspropyrgos Refinery of Hellenic Petro-
leum provided and the tool takes into account, unless the
user provides other financial data.

Figure 8. The interface of the HDS–FCC simulator: sensitivity analysis runs. Effect of the VGO feed rate on some FCC product yields and quality.

Table 4. The values of the input variables in the industrial runs used for the
evaluation of the tool prediction mode.

Input variables Test 1 Test 2 Test 3

Feed specific gravity 0.910 0.905 0.912
Refractive index (at 20 �C) 1.490 1.486 1.488
Sulphur in feed (% wt) 0.99 0.30 1.10
Basic nitrogen in feed (wppm) 219 730 178
Mean average boiling

point (�C)
453 461 444

FCC VGO feed rate (t h�1) 259 267 280
FCC feed preheat (�C) 365 366 373
FCC riser top temperature (�C) 520 521 520
FCC riser pressure (kg cm�2) 2.17 2.24 2.39
FCC regenerator temperature (�C) 732 732 730
FCC catalyst addition

rate (Mt day�1)
4.2 4.0 3.6

Catalyst micro activity 68 72 71
Catalyst average particle

size (mm)
79 75 84

Catalyst total surface
area (m2 g�1)

153 150 157

Catalyst average bulk
density (g m�3)

0.89 0.90 0.88
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Gasoline Maximization (Base Case)

This scenario considers a variety of conditions, under
which the maximization of the gasoline yield can be achieved.
In the base case the optimization algorithm was asked to
achieve the most profitable solution for the operation of the
combined HDS–FCC units, by changing all the optimization
variables of Tables 1 and 3, while keeping the optimization
parameters constant at their mean values. This scenario was
repeated three times with the three optimization methods
(quasi-Newton, conjugate gradient and genetic algorithm),
in order to explore the accuracy of each method. As shown in
Table 7, all three algorithms delivered the same solution, with
the gasoline yield reaching 50.3% wt. However, only the
genetic algorithm was systematically converging to the global
solution, while the other two methods occasionally stuck in
local maxima. For that reason all the optimization scenarios
presented were performed with the genetic algorithm.

Starting from the base case scenario we tried to explore the
effect of maximizing the yield of gasoline on the total profit.
This was done by sequentially increasing the constraint
of gasoline yield from the value of the base case scenario
until no feasible solution could be reached. As shown in
Table 7, the maximization of the gasoline yield was mainly
achieved by increasing the ratio of HDS feed to VGO from
tank rates, which corresponded to better FCC feed quality.
At gasoline yield of 51.0% wt the HDS feed rate reached its
maximum value and after that no feasible solution could be
achieved, which means that, with the optimization para-
meters receiving their average values, the maximum gasoline
yield that can be produced is around 51% wt.

Constraints on Gasoline Yield

The scenarios of this category examine some cases of
profitable operation of the combined HDS–FCC units using
constraints to the gasoline yield over 50% wt and varying
variables concerning the catalyst and the unit operation.
Starting from the base case of Table 7, we observed the
influence of an optimization parameter concerning the
catalyst, namely the MAT activity index. For this reason
the base case optimization scenario was repeatedly
performed, varying the MAT value to cover all its respective
range, as shown in Table 8. What was interesting was that,
along with the expected increase in the product yields
(conversion, gasoline yield and LPG yield), a relation of
the sulphur content in LCN and the total gasoline sulphur
with MAT was obvious. That means that among the many
solutions the system can reach in order to produce gasoline
yields over 50% wt, there are some that favour better
product quality; for instance more active catalyst (greater
MAT) leads the system to the production of light products
with lower sulphur content. Another important remark is
that greater MAT values allow the system to operate at
higher VGO tank rates, implying that better catalyst quality
can crack more feed of worse quality, which is in agreement

Table 5. HDS–FCC tool validation in the prediction mode (CT¼ commercial test; MP¼models prediction; RE¼ absolute relative error %).

Test 1 Test 2 Test 3

Output variables CT MP RE CT MP RE CT MP RE

Conversion (% wt) 72.1 72.4 0.5 72.8 75.2 3.3 70.9 72.0 1.4
Sour gas (% wt) 4.4 4.7 7.1 4.6 4.9 5.9 5.1 5.0 1.5
LPG (% wt) 15.1 14.9 1.3 15.0 15.5 3.3 14.7 14.9 1.5
Gasoline (% wt) 48.6 48.8 0.5 49.3 50.8 3.2 47.3 48.2 1.9
LCCO (% wt) 20.0 18.9 5.4 19.6 16.8 14.3 20.3 19.2 5.6
Slurry (% wt) 7.9 8.7 9.4 7.6 8.0 5.3 8.7 8.9 1.4
Coke (% wt) 4.0 4.0 0.9 4.0 4.0 1.8 3.9 3.9 0.3
Aromatics in gasoline (% wt) 26.0 22.5 13.5 24.5 26.8 9.4 24.6 22.2 9.8
Olefins in gasoline (% wt) 31.0 32.2 3.9 29.0 25.1 13.4 32.0 30.7 4.1
Paraffins in gasoline (% wt) 23.2 24.9 7.3 27.0 21.7 19.6 24.5 24.8 1.2
Naphthens in gasoline (% wt) 13.3 12.3 7.5 12.1 12.7 5.0 13.2 12.0 9.1
Propane in LPG (% wt) 8.8 9.1 3.0 10.3 9.8 4.7 9.9 10.3 4.0
Propylene in LPG (% wt) 30.2 30.6 1.4 36.2 34.5 4.8 31.8 33.5 5.4
Butane in LPG (% wt) 5.3 5.4 1.8 4.6 4.8 4.1 5.2 5.1 1.8
i-Butane in LPG (% wt) 17.9 17.6 1.8 17.7 17.0 3.6 17.9 17.3 3.3
Butenes in LPG (% wt) 37.1 36.9 0.5 30.8 33.6 9.4 34.9 33.4 4.4
LCN in gasoline (% wt) 86.9 84.7 2.5 84.4 85.1 0.8 84.5 84.6 0.1
RON of LCN 92.6 92.9 0.3 93.1 93.2 0.1 93.5 93.1 0.5
RON of HCN 89.1 89.9 0.9 91.1 90.0 1.2 91.8 91.7 0.1
Sulphur in LCN (% wt) 0.04 0.04 27.3 0.02 0.03 31.8 0.07 0.06 20.9
Sulphur in HCN (% wt) 0.32 0.30 5.3 N=A 0.25 N=A 0.22 0.27 21.5
Sulphur in LCCO (% wt) 1.59 1.74 9.3 0.63 1.12 77.8 1.78 1.77 0.4

Table 6. Product and raw material prices
(default values). (Reference: personal com-
munication with Aspropyrgos Refinery of
Hellenic Petroleum S.A., 2001.)

Product prices ( $ t�1)
Sour gas 156
LCCO 200
Slurry 132
LCN 296
HCN 243
Propane 313
Propylene 313
n-Butane 313
i-Butane 313
Butene 313

Material costs ( $ t�1)
HDS-feed 156
VGO from tank 186
Hydrogen in HDS 300
FCC catalyst 1710
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with the respective FCC theory and the experimental
experience. At this point it should be pointed out that the
increase in the MAT property of the catalyst generally
corresponds to an additional expense for the refinery,
which was not included in this scenario.

As stated above, the flexibility of the tool provides the
option of setting an optimization variable as optimization
parameter and in this way testing a variety of optimization
scenarios for different constant values of this parameter.
We have exploited this ability of the tool for the case of the
feed preheat temperature. Moreover, we have kept constant
the MAT parameter at its lowest value (MAT¼ 66), which
refers to a catalyst of worse quality. The results have shown
that the gasoline constraint can still be satisfied under these
conditions (Table 9). In the real process an increase in the
feed preheat temperature should lead to an immediate
decrease in the catalyst circulation rate (for constant TRX

temperature), as the mass and heat balances of the closed
loop FCC system impose. This is evident in Table 9 for the

scenarios in which the riser temperature remains relatively
constant (TPR 360–370 and TPR 380–390K). Moreover, it is
observed that as the feed preheat temperature increases, the
TRX also increases, while the VGO from tank decreases. At
TPR 380�C the TRX reaches its maximum value and probably
the relation of these two temperatures allows the catalyst
circulation rate to reach a maximum and the total system to
reach the most profitable solution of this scenario. From this
point on the rise of TPR leads to less profitable solutions and
at TPR 396�C the gasoline constraint cannot be satisfied.

Constraints to Gasoline Quality

The scenarios of this category examine some cases of
profit maximization under strict specifications for the gaso-
line RON. The constraints for RON were set for those FCC
products (LCN, HCN), which compose the gasoline frac-
tion. More specifically, specifications were set for RONLCN

and RONHCN to be greater than 93.4 and 92.0 respectively.

Table 7. HDS–FCC tool optimization mode: base case scenario. Effect of optimization method (QN¼ quasi-Newton; CG¼ conjugate gradient;
GA¼ genetic algorithm) and gasoline constraints for gasoline maximization (units are as defined in Tables 1–3).

Base case Gasoline constraints

QN CG GA >50.4 >50.7 >51.0 >51.3

HDS VGO feed rate (t h�1) 175.0 175.0 175.0 175.0 199.0 220.0
HDS hydrogen make-up (kNm3 h�1) 15.0 15.0 15.0 15.0 15.0 15.0
VGO tank feed rate (t h�1) 124.9 124.9 125.0 125.0 107.7 79.0
FCC feed preheat (�C) 362.1 362.0 362.2 360.2 360.0 360.0
FCC riser top temperature (�C) 521.4 521.4 521.4 521.7 522.3 526.0

Conversion (% wt) 74.6 74.6 74.6 74.6 75.0 75.5 No feasible
LPG (% wt) 15.3 15.3 15.3 15.3 15.3 15.5 solution
Gasoline (% wt) 50.3 50.3 50.3 50.4 50.7 51.0
Coke (% wt) 17.1 17.1 17.1 17.2 17.2 17.1
Sulphur in LCN (% wt) 0.035 0.035 0.035 0.035 0.032 0.028
Sulphur in HCN (% wt) 0.281 0.281 0.281 0.284 0.273 0.241
Sulphur in gasoline (% wt) 0.072 0.072 0.072 0.072 0.068 0.061
LCN in gasoline (% wt) 85.2 85.2 85.2 85.1 84.8 84.7
RON of LCN 93.2 93.2 93.2 93.2 93.2 93.2
RON of HCN 90.1 90.1 90.1 90.1 90.0 90.1
RON of naphtha 92.7 92.7 92.7 92.7 92.7 92.7

Total margin 5064 5064 5064 5057 4766 4229

Table 8. HDS–FCC tool optimization mode: MAT activity effect (gasoline constraints to 50% wt). (Units are as defined in
Tables 1–3.)

Catalyst micro activity 66 68 71 73 75

HDS VGO feed rate (t h�1) 175.0 175.0 175.0 175.0 175.0
HDS hydrogen make-up (kN m3 h�1) 15.0 15.0 15.0 15.0 15.0
VGO tank feed rate (t h�1) 120.7 122.9 125.0 125.7 125.9
FCC feed preheat (�C) 360.0 360.0 362.2 363.1 363.5
FCC riser top temperature (�C) 520.6 520.8 521.4 522.0 522.7

Conversion (% wt) 74.3 74.4 74.6 74.7 74.8
LPG (% wt) 15.1 15.2 15.3 15.3 15.3
Gasoline (% wt) 50.3 50.3 50.3 50.4 50.5
Coke (% wt) 4.0 4.0 4.0 4.0 4.0
Sulphur in LCN (% wt) 0.037 0.036 0.035 0.034 0.033
Sulphur in HCN (% wt) 0.277 0.279 0.281 0.280 0.276
Sulphur in gasoline (% wt) 0.073 0.073 0.072 0.071 0.069
LCN in gasoline (% wt) 85.1 85.2 85.2 85.1 85.0
RON of LCN 93.2 93.2 93.2 93.2 93.2
RON of HCN 90.5 90.4 90.1 90.0 90.0
RON of naphtha 92.8 92.8 92.7 92.7 92.7

Total margin 4840 4948 5064 5114 5150
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The gasoline yield in the most profitable scenario is now
based only in the financial data used in the objective
function, which of course favour greater values of gasoline
mass flow. This was done because the algorithm failed to
meet the RON specifications and simultaneously achieve
gasoline yields over 50% wt.

Another way to perform RON maximization without
using hard constraints is to exploit the d factors and the
standard RON�

i values, which were mentioned above. By
default these parameters have zero value, which means that
the objective function does not take into account the quality
of the gasoline when converging to a solution. For the test
presented here (Table 10), a d factor equal to 10 and
reference RON �

i values equal to the minimum values
observed in the experimental database during the develop-

ment of the models (92.1 for the RONLCN and 85.7 for the
RONHCN fraction) were used. Such a large value for the d
factor is of course not realistic, yet it clearly demonstrates
the possible use of this feature for a property optimization.
What the optimizer has shown is that, even for the extreme
case of d ¼ 10, the RON values demanded could not be
reached. That should be expected, as it is known that the
gasoline RON is mostly affected by the feedstock properties
(Magee et al., 1978) and hydrotreated feeds with low
aromatic content are not expected to deliver high RON
values in the FCC gasoline. Thus, the effects of the
refractive index (RI) and the specific gravity (SG) of the
VGO from tank have been examined, as these two para-
meters compose a very good indicator of the aromaticity of a
feedstock. What was observed (Table 10), was that, as the

Table 9. HDS–FCC tool optimization mode: feed preheat temperature effect (gasoline constraints to 50% wt). (Units are as
defined in Tables 1–3).

FCC feed preheat (�C)

360 370 380 390 396

Catalyst circulation rate (m3 h�1)

19.71 19.68 19.92 19.64

HDS VGO feed rate (t h�1) 175.0 175.0 175.0 204.0
HDS hydrogen make-up (kN m3 h�1) 15.0 15.0 15.0 15.0
VGO tank feed rate (t h�1) 120.7 119.7 142.4 90.9
FCC riser top temperature (�C) 520.6 521.5 526.0 526.0

Conversion (% wt) 74.3 74.2 74.5 74.9 No feasible
LPG (% wt) 15.1 15.2 14.9 15.6 solution
Gasoline (% wt) 50.3 50.1 50.3 50.0
Coke (% wt) 4.0 4.0 3.9 3.9
Sulphur in LCN (% wt) 0.037 0.039 0.038 0.036
Sulphur in HCN (% wt) 0.277 0.283 0.332 0.224
Sulphur in gasoline (% wt) 0.073 0.075 0.085 0.064
LCN in gasoline (% wt) 85.1 85.3 83.8 85.1
RON of LCN 93.2 93.2 93.4 93.4
RON of HCN 90.5 90.5 90.0 90.6
RON of naphtha 92.8 92.8 92.9 93.0

Total margin 4840 4794 4914 4228

Table 10. HDS–FCC tool optimization mode: constraints to gasoline RON scenario. (Units are as defined in Tables 1–4).

Unconstrained case RON constraints DRON¼ 0

DRON RI at SG¼ 0.89 (VGO tank)

0 10 1.48 1.49 1.5 1.51

HDS VGO feed rate (t h�1) 175.0 208.8 175.0 175.0 175.0 175.0
HDS hydrogen make-up (kN m3 h�1) 15.0 15.0 15.0 15.0 15.0 15.0
VGO tank feed rate (t h�1) 125.0 150.0 80.0 78.9 77.6 76.2
FCC feed preheat (�C) 362.2 380.4 386.3 380.8 375.6 370.4
FCC riser top temperature (�C) 521.4 526.0 526.0 526.0 526.0 526.0

Conversion (% wt) 74.6 73.9 74.9 74.8 74.7 74.7
LPG (% wt) 15.3 14.7 16.1 16.0 16.0 16.0
Gasoline (% wt) 50.3 50.1 49.6 49.0 49.4 49.4
Coke (% wt) 4.0 3.9 4.0 4.0 4.0 4.0
Sulphur in LCN (% wt) 0.035 0.037 0.045 0.046 0.046 0.046
Sulphur in HCN (% wt) 0.281 0.352 0.208 0.210 0.212 0.214
Sulphur in gasoline (% wt) 0.072 0.089 0.067 0.068 0.068 0.069
LCN in gasoline (% wt) 85.2 83.7 86.5 86.6 86.6 86.6
RON of LCN 93.2 93.4 93.4 93.4 93.4 93.4
RON of HCN 90.1 89.4 92.0 92.0 92.0 92.0
RON of naphtha 92.7 92.8 93.2 93.2 93.2 93.2

Total margin 5064 7579 4026 3974 3919 3861
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aromaticity of the feed was increased (high RI and low SG),
the RON constraints were satisfied, but with a parallel
decrease in the gasoline yield. That is what should be
expected in this scenario, as high aromaticity favours high
RONs, but also does not favour the crackability of the feed
and thus the FCC unit conversion and gasoline yield (Magee
et al., 1980).

CONCLUSIONS

A computer-aided tool oriented to engineers=managers,
who are involved in making decisions regarding the feed
and catalyst properties as well as the operational aspects of
the HDS–FCC integrated system, was presented. A compar-
ison of the tool results with industrial measurements verified
its prediction accuracy. It has also been demonstrated that
the user can exploit such a tool to easily create the kind of
scenarios that are more applicable regarding all the optimi-
zation aspects. Because of the complexity that arises from
inherent difficulties in each process and the combination of
the two processes, the everyday operational decisions that
have to be made are not always straightforward. That was
evident in almost all the optimization scenarios tested. The
gasoline maximization, which is usually the goal-product of
the FCC unit, was subjected to restrictions in its quality. The
trend is for quality specifications to become stricter, which is
one more factor for changes in the operation of the unit and
therefore an additional argument for the necessity of such
tools. The tool implementation provided a variety of options,
as well as a financial evaluation of these different solutions.
The trends revealed are consistent with the existing theory
and experience, which also speaks for the overall behaviour
and accuracy of the tool.

NOMENCLATURE

APS catalyst average particle size, mm
BN basic nitrogen in feed, wppm
CCR FCC catalyst circulation rate, m3 h�1

FAIR FCC regenerator air feed mass flow, t h�1

FCAT FCC catalyst addition rate, Mt day�1

FHDS HDS VGO feed rate, t h�1

FVGO FCC VGO feed rate, t h�1

MAT catalyst micro activity
MeABP mean average boiling point, �C
PHDS HDS pressure, bar
PR FCC riser pressure, kg cm�2

PRD FCC riser pressure drop, kg cm�2

QAIR FCC regenerator air feed, kN m3 h�1

QH,M HDS hydrogen make-up, kN m3 h�1

QH,q1 first quench rate, kN m3 h�1

QH,q2 second quench rate, kN m3 h�1

QH,R recycle hydrogen rate, kN m3 h�1

RI refractive index, at 20�C
RONHCN RON of HCN
RONLCN RON of LCN
S sulphur in feed, % wt
SA catalyst total surface area, m2 g�1

SG feed specific gravity, at 15�C
SHCN sulphur in HCN, % wt
SLCCO sulphur in LCCO, % wt
SLCN sulphur in LCN, % wt
THDS HDS temperature, �C
TPR FCC feed preheat, �C
TRA FCC riser average temperature, �C
TREG FCC regenerator temperature, �C
TRX FCC riser top temperature, �C
WAromatics aromatics in gasoline, % wt

WButane butane in LPG, % wt
WButenes butenes in LPG, % wt
Wi-Butane i-butane in LPG, % wt
WLCN LCN in gasoline, % wt
WNaphthens naphthens in gasoline, % wt
WOlefins olefins in gasoline, % wt
WParaffins paraffins in gasoline, % wt
WPropane propane in LPG, % wt
WPropylene propylene in LPG, % wt
yCoke coke, % wt
yGasoline gasoline, % wt
yLCCO LCCO, % wt
yLPG LPG, % wt
ySlurry slurry, % wt
ySourGas sour gas, % wt
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